This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
半導體雷射簡介
雷射是什麼?
「雷射」是由英文laser 音譯而來,而這英文名詞則是由light amplification by stimulated emission of radiation 的字首所組成;顧名思義,即光可藉由激發放射而放大的一種裝置。
雷射的發明可以追溯到1958 年,物理學家夏樂(Arthur L. Schawlow)和湯里士(Charles H. Townes )在《物理評論》(Physical Review )上發表一篇名為<紅外線與光學鎂射>(Infrared and Optical Masers )的論文,從而開創了一個新的科學領域,並產生了一個具數十億美元產值的新工業,二人先後都獲得諾貝爾物理學獎。
自1960 年美國物理學家梅曼(Theodore Malman)首先利用光與共振腔產生雷射光以來,雷射幾乎成為各種領域應用上不可或缺的工具。我們可利用雷射來進行對準定位、量測精確的距離、物體表面的加工、切割與電鍍等工作;而雷射在資訊產品的應用則有光纖通訊、顯示器、消費性的雷射影碟與唱片等;在醫療上,有雷射手術與雷射除斑等。所以,雷射科技將成為廿一世紀的閃耀之星。光與物質間的作用每一種物質都有固定的能階,當光與物質發生交互作用時,原子內部的電子就從某一能階狀態躍遷到另一能階狀態,而躍遷過程會伴隨著光的吸收和輻射。
雷射的組成
雷射組成的要件通常包括活性介質、激發源及光共振腔。
活性介質必須具有居量反轉的特性,才能形成激發放射的雷射光。無論是何種雷射,其所使用的活性介質都必須具有激發後能將入射光加以放大的特性,而一般的物質則是會吸收能量而衰減入射光的反射。因此,以活性介質來區分雷射的種類,則有:使用氣體為活性介質的氣體雷射,例如氦氖雷射、二氧化碳雷射;使用液體為活性介質的液體雷射,如染料雷射;使用固體為活性介質的固體雷射,如紅寶石雷射;使用化學週期表中三族、五族半導體為材料的,如砷化鎵、砷磷化銦鎵、砷化鎵鋁等半導體雷射。
激發源的形式主要有兩種,就是光激發源和電激發源。固體雷射和液體雷射多使用光激發源,而氣體雷射和半導體雷射則使用電激發源。所謂光激發源,就是利用適當光源來激發活性介質,使電子能從基態受激躍升到較高能階的激發態,常用的有:脈波式輸出雷射用的氙氣閃光燈,以及連續式輸出用的氪弧光燈、發光二極體等。而光激發源的效益偏低,這是未來科學家要努力研究的重要課題之一。至於氣體雷射或半導體雷射則多使用電做為激發源,例如加電壓等方式。
共振腔的主要功能是將光限制在腔內以產生共振,使光返復經過活性介質不斷地被放大,達到臨界值時就會產生雷射光。共振的目的,除了使光放大外,更重要的是產生單色的雷射光。共振腔的結構主要是由兩鏡面組成,此兩鏡面可以是平面,也可以是凸面或凹面的組合,設計的觀點為穩定性與雷射光是否充分涵蓋活性介質。所謂穩定性,就是光波往返於鏡面之間,不致離開此共振腔。用幾何光學來說明,就是雷射光傳播方向必須接近光軸而且角度很小。
雷射光特性的應用
半導體雷射或稱雷射二極體具有體積輕巧、效益高、消耗功率小、使用壽命長、以及容易由電流大小來調制其輸出功率、調制頻率可達十億赫茲等特性。這些特性使它廣泛應用於資訊處理、光纖通訊、家電用品及精密測量上。而且,因製作精細、技術層次高,對於整體光電產業而言,具有舉半導體雷射的基本結構足輕重的地位,也是關鍵性元件。
物質吸收能量越多時,物質(結構或狀態)受到的影響也越多。但是,各種物質能吸收的電磁波頻率分布並不相同。例如,透明無色的物質不吸收可見光;綠色物質較能吸收紅色光。因此,單色性的光用在與物質作選擇性的交互作用,例如二氧化碳雷射之10.6 微米(1 微米=1000 奈米)的紅外光會被生物組織中的水份吸收,所以作用範圍較表淺;釹釔鋁石榴石雷射之1.06微米紅外光,則可作用到深層組織;紅寶石雷射所發出的紅光(波長694.3 奈米),不適合牙齒硬組織的處理。
雷射光束的低發散性可以讓雷射光照射到很遠的地方,仍保持相當高的強度,其中的光線很近似互相平行,可用在工程、軍事、環境、生物體等的遙測,例如測微血管內的血流速率,以及精密加工、光纖通訊、飛行器的光纖導航儀、光束武器等。雷射光的高強度使受照的單位面積上每秒內獲得很高的能量,產生相當強的熱能、光動力(撞擊及光壓)、光化學、電磁場等作用。非線性光學的現象更使光脈波的脈寬、光波波長(頻率)得以調變,探測光譜時,可獲相當高的靈敏度及鑑別率。
雷射光的相干性高,可用於藉干涉效應反映物質狀態及分布,產生全像紀錄。而全像可應用在檢驗、資料的高密度存取、藝術、防仿冒標籤等。例如光纖導航儀,也是利用雷射光干涉效應的精密器件。從衣食住行育樂到醫療、資訊與通訊、科技研發、工程施工及品管、藝術活動、文物維護、環境監測、國防攻守,雷射光的應用範圍逐漸增加,其中每樣用途都發揮了雷射光束的一種或多種特性。以下就其中幾項加以說明。
光纖通訊
光纖通訊具有不受電磁波干擾、長距離傳輸以及通訊容量遠大於電纜線的優點,已逐漸成為通訊的主流,而其中光源主要是半導體雷射。當電的訊號經過驅動電路後,經由半導體雷射轉換成光的訊號,再經放大器放大及訊號處理器處理後,就成為輸出訊號輸出。目前,實用的光纖通訊光源是高穩定度的砷化鎵及砷化鋁鎵等半導體雷射,波長在0.8 ∼1.5 微米之間。
通訊容量與傳輸訊號的頻率關係密切,頻率愈高,可傳輸的資料愈多。光波頻率約為1014 赫茲(Hz ,每秒振動的次數),而電通訊用的無線電波頻率只有1010 赫茲,光波的頻率整整高出10000 倍。因此,使用雷射為主的光纖通訊,有驚人的通訊容量。
雷射醫療
雷射在醫療上的應用,主要是利用雷射的熱效應、光生化效應、壓力效應及電離層的效應。例如,雷射手術刀就是利用熱作用,其原理是,當功率大於某一定值的雷射光照射在人體時,表皮內的水份吸收光能而蒸發,其周邊表面形成炭化層,炭化層內部形成變性層。炭化層與變性層愈薄,則傷口癒合得愈快。除了切割外,雷射熱效應也可應用在凝固,當雷射功率較小時,照射於血管組織,使其水分減少而達到凝固止血目的。另外,除去刺青、黑痣、雀斑、肝斑等,都可使用雷射來治療。
雷射的光生化效應可用在治療癌症,當適當波長的雷射光照射腫瘤時,使基態的氧分子激發到激發態,激發態的高能階的氧使惡性腫瘤組織產生氧化,而達到消除癌細胞的目的。當雷射光的波長不被皮膚表層所吸收,而能深入皮內組織,就可應用在治療疼痛上。
雷射光碟
光碟是將連續的類比聲波或影像,切成許多小間隔,再將這些小間隔依振幅大小變成十六位元的二進位數位信號。訊號經數位化後,利用雷射打孔成固定大小的孔,以1 和0 來代表孔的有無,而將聲波記錄下來。其音質的好壞取決於單位時間內波形的變化,以及聲音強弱分割的細微程度。讀取訊號時,雷射光照射光碟表面,反射回來的光經光檢測器接收後,依光量大小轉為強弱不同的電波訊號,而重現影像或聲音信號。
光碟除了容量大,還有許多優點,例如,因為是非接觸式的讀取,所以不怕磨損,很耐用,唱頭使用壽命長,諧波失真小等。
雷射科技早已成為目前各個研究領域與應用上不可或缺的工具,例如,精確的距離量測,是由雷射來完成;雷射影碟和光碟,就是雷射在資訊方面的產品;各種材料的切割或加工,也可由雷射來擔任;而醫療上的應用更是廣泛。美國在雷根總統時代,曾經想利用大功率的雷射,經由衛星的反射而摧毀敵國的飛彈,可見雷射在軍事用途上,也有一席重要的地位。所以,我們可以預期,未來雷射在各行各業的應用將日益增廣,也就是說,雷射工業如旭日東升,前途無量,值得投入更多人力、物力去研發。
作者:徐冰